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Abstract. It is shown that in semi-inclusive deep inelastic scattering (DIS) of electrons off complex nuclei,
the detection, in coincidence with the scattered electron, of a nucleus (A− 1) in the ground state, as well
as of a nucleon and a nucleus (A− 2), also in the ground state, may provide unique information on several
long standing problems, such as: i) the nature and the relevance of the final state interaction in DIS; ii) the
validity of the spectator mechanism in DIS; iii) the medium induced modifications of the nucleon structure
function; iv) the origin of the EMC effect.

PACS. 13.40.-f Electromagnetic processes and properties – 21.60.-n Nuclear-structure models and methods
– 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 25.60.Gc Breakup and momentum
distributions

1 Introduction

In spite of many experimental and theoretical efforts (for
a recent review see [1]), the origin of the nuclear EMC ef-
fect has not yet been fully clarified, and the problem as to
whether the quark distributions of nucleons undergo defor-
mations due to the nuclear medium remains open. Under-
standing the origin of the EMC effect would be of great
relevance in many respects; consider, for example, that
most QCD sum rules and predictions require the knowl-
edge of the neutron quark distributions, which can only
be extracted from nuclear experiments; this implies, from
one side, a reliable knowledge of various nuclear quanti-
ties, such as the nucleon removal energy and momentum
distributions, and, from the other side, a proper treat-
ment of the lepton-nucleus reaction mechanism, including
the effect of final state interaction (FSI) of the leptopro-
duced hadrons with the nuclear medium. Since the Q2 and
x-dependences of the EMC effect is smooth, the measure-
ments of the nuclear quark distributions in inclusive deep
inelastic scattering (DIS) processes have not yet estab-
lished enough constraints to distinguish between different
theoretical approaches. In order to progress in this field,
one should go beyond inclusive experiments, e.g. by con-
sidering semi-inclusive experiments in which another par-
ticle is detected in coincidence with the scattered electron.
Most of theoretical studies in this field concentrated on the
process D(e, e′N)X, where D denotes the deuteron, N a
nucleon, and X the undetected hadronic state. Current
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theoretical models of this process are based upon the im-
pulse approximation (IA) (also called the spectator model),
according to which X results from DIS on one of the two
nucleons in the deuteron, with N recoiling without in-
teracting with X and being detected in coincidence with
the scattered electron (for an exhaustive review see [2]).
The model has been improved by introducing FSI [3], as
well as by considering deviations from the spectator model
by assuming that the detected nucleon originates from
quark hadronisation [4,5]. The semi-inclusive process on
the deuteron D(e, e′N)X, on which experimental data will
soon be available [6], could not only clarify the origin of
the EMC effect, but, as illustrated in [7], could also pro-
vide more reliable information on the neutron structure
function.

The spectator model has also been extended to com-
plex nuclei by considering the process A(e, e′N)X, and
by assuming that DIS occurs on a nucleon of a correlated
pair, with the second nucleon N recoiling and being de-
tected in coincidence with the scattered electron [5]. In
the present paper two new types of semi-inclusive pro-
cesses on complex nuclei will be considered, namely: i) the
process A(e, e′(A−1))X, in which DIS occurs on a mean-
field, low-momentum nucleon, and the nucleus (A − 1)
recoils with low momentum and low excitation energy
and is detected in coincidence with the scattered electron
(note that for A = 2 such a process coincides with the
process D(e, e′N)X discussed previously); ii) the process
A(e, e′N2(A − 2))X, in which DIS occurs on a high mo-
mentum nucleon N1 of a correlated pair, and the nucleon
N2 and the nucleus A − 2 recoil with high and low mo-



192 C. Ciofi degli Atti et al.: Semi-inclusive deep inelastic lepton scattering off complex nuclei

menta, respectively, and are detected in coincidence with
the scattered electron. It will be shown that these pro-
cesses exhibit a series of very interesting features which
could in principle provide useful insight on the following
basic issues: i) the nature and the relevance of FSI in DIS;
ii) the validity of the spectator mechanism leading to the
cross section (9); iii) the medium induced modifications of
the nucleon structure function; iv) the origin of the EMC
effect. For the above reasons, the semi-inclusive processes
we will consider are worth being theoretically analysed,
even though their experimental investigation represents a
difficult task. It should be emphasised, in this respect, that
the first version of the present paper [8] was motivated by
the discussions on the feasibility of an electron-ion collider,
where the detection of various nuclear fragments resulting
from DIS, could in principle be possible [9,10].

Our paper is organised as follows: in Sect. 2 the
basic nuclear quantities which enter the problem, viz.
the one-body and two-body nuclear Spectral Functions
are briefly discussed; the cross section for the process
A(e, e′(A− 1))X is presented in Sect. 3, where the possi-
bilities offered by the process to experimentally check the
validity of the spectator mechanism and the properties
of the structure function of a mean-field, weakly bound
nucleon, are discussed; the cross section for the process
A(e, e′N2(A− 2))X, and how this process can be used to
investigate the spectator model and the properties of the
structure function of a deeply bound nucleon, are discussed
in Sect. 4; the local EMC effect, i.e. the separate contribu-
tion to the EMC effect of nucleons having different binding
in the nucleus, is discussed in Sect. 5; the Summary and
Conclusions are presented in Sect. 6. Appendix A contains
the derivation of the cross sections for both processes.

2 The nuclear spectral function

In order to make clear the nuclear physics aspects un-
derlying the above processes, few basic concepts about
the relationships between the nucleon momentum distri-
butions in the parent nucleus A and the excitation energy
of daughter nuclei (A − 1) and (A − 2) in semi-inclusive
processes, will be recalled. The nucleon Spectral Function
PN1(|~p1|, E) represents the joint probability to have in the
parent nucleus a nucleon with momentum |~p1| and removal
energy E

PN1(|~p1|, E) = 〈Ψ0
A | a+

~p1
δ
(
E − (HA − E0

A)
)
a~p1 |Ψ0

A〉 =∑
f

∣∣∣〈~p1, Ψ
f
A−1 |Ψ0

A〉
∣∣∣2 δ (E − (EfA−1 − E0

A)
)
, (1)

where a+
~p1

and a~p1 are creation and annhilitation op-
erators, HA is the nuclear Hamiltonian, E0

A (Ψ0
A)is the

ground state energy (wave function) of A, and EfA−1 =
E0
A−1 + E∗A−1 (ΨfA−1)is the intrinsic energy (wave func-

tion) of A− 1, whose ground state energy is E0
A−1. Thus,

the nucleon removal energy E = EfA−1 − E0
A = MA−1 +

M −MA + E∗A−1 (where Mi is the mass of system i) is
the energy required to remove a nucleon from A leaving
(A− 1) with excitation energy E∗A−1.

A common representation of the spectral function is
as follows (omitting unnecessary here indices and summa-
tions) [11]

PAN1
(|~p1|, E) = P0(|~p1|, E) + P1(|~p1|, E) (2)

where

P0(|~p1|, E) =
∑
α<F

nAα (|~p1|)δ(E − εα) (3)

and

P1(|~p1|, E) =
1

(2π)3

1
2J0 + 1

∑
M0σ

∑
f 6=α

∣∣∣∣∫ d~r ei ~p1·~rGf0(~r)
∣∣∣∣2

× δ[E − (EfA−1 − EA)] (4)

In the above equations F denotes the Fermi level, nAα (|~p1|)
is the momentum distribution of a bound shell model state
with eigenvalue εα > 0, and Gf0 is the overlap between
the wave functions of the ground state of the parent A and
the state f of the daughter (A − 1) (see for details [12–
14]). The quantity P0(|~p1|, E), represents the shell model
contribution to the Spectral Function, where the occupa-
tion numbers of the shell model states below the Fermi sea
are given by Nα =

∫
d~p1n

A
α (|~p1|) < 1, whereas P1(|~p1|, E)

provides the contribution from correlations, which deplete
the shell model states α < F . The so called Momentum
Sum Rule links the spectral function to the nucleon mo-
mentum distribution, viz.

nA(|~p1|) =

∞∫
Emin

PAN1
(|~p1|, E)dE

=
∑
α<F

nAα (|~p1|) +
∑
f 6=α

∣∣∣∣∫ d~r ei ~p1·~rGf0(~r)
∣∣∣∣2, (5)

where Emin = EA−1 − EA. It can therefore be seen that

nA0 (|~p1|) ≡
∑
α<F

nAα (|~p1|) =

∞∫
Emin

PA0 (|~p1|, E)dE,

represents the momentum distribution in the parent, when
the daughter is either in the ground state or in hole states
of the parent, whereas

nA1 (|~p1|) ≡ nA(|~p1|)− nA0 (|~p1|) =

∞∫
Emin

PA1 (|~p1|, E)dE

represents the momentum distribution in the parent, when
the daughter is left in highly excited states, with at least
one particle in the continuum; this means that nA0 (|~p1|) is
the momentum distribution of weakly bound (shell-model)
nucleons, while nA1 (|~p1|) is the momentum distributions of
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Fig. 1. The processes A(e, e′(A −
1))X ) (a) and A(e, e′N2(A − 2))X
(b) within the Impulse Approxima-
tion (the Spectator mechanism)

deeply bound nucleons generated by N-N correlations. A
realistic model for the latter leads to the following form of
the corresponding spectral function PA1 (|~p1|, E) [12–14]

PA1 (|~p1|, E) = (6)∫
d3kcmn

A
rel (|~p1 − ~pcm/2|)nAcm(|~pcm|)

×δ
[
E − E(2)

thr −
(A− 2)

2M(A− 1)
·
(
~p1 −

(A− 1)~pcm
(A− 2)

)2
]
,

where nArel and nAcm are, respectively, the relative and Cen-
ter of Mass momentum distributions of a correlated pair.

It has been shown [13] that such a model satisfacto-
rily reproduces the nuclear spectral functions calculated
within many-body approaches with realistic NN interac-
tion and describes fairly well the quasi elastic inclusive
A(e, e′)X processes.

Within the spectator model, the process A(e, e′(A −
1))X is directly proportional to the one-nucleon spectral
function, whereas the process A(e, e′N(A − 2))X is pro-
portional to the two-nucleon spectral function, which is
defined as follows

PN1N2(~p2, ~p1, E
(2))

= 〈Ψ0
A | a+

~p1
a+
~p2
δ
(
E(2) − (HA−2 − EA)

)
a~p2a~p1 |Ψ0

A〉

=
∑
f

∣∣∣〈~p1, ~p2, Ψ
f
A−2 |Ψ0

A〉
∣∣∣2 δ (E(2) − (EfA−2 − EA)

)
,

(7)

where E(2) = E
(2)
th +E∗A−2 is the two-nucleon removal en-

ergy, E∗A−2 is the intrinsic excitation energy of the A− 2
system, and E

(2)
th = 2M + MA−2 −MA the two- nucleon

break-up threshold. If one adheres to the model leading to
(6), the correlated part of the two-nucleon spectral func-
tion can be written as follows [5]:

PN1N2(~p1, ~p2, E
(2)) = nAcm(|~PA−2|)nArel.
× (|~p2 + ~PA−2/2|)δ(E(2) − E(2)

th ) (8)

3 The A(e, e′(A− 1))X process

In Impulse Approximation, the process A(e, e′(A − 1))X
(depicted Fig. 1a), represents the absorption of the the vir-
tual photon by a quark of a shell-model nucleon, followed
by the recoil of the nucleusA−1 in a low momentum,~PA−1,
and low excitation energy, E∗A−1, state (E∗A−1 ' 0 or '
shell-model hole state energy of the target);the scattered
electron and the nucleus (A − 1) are detected in coinci-
dence. The aim for studying such a process is twofold:

i) to investigate the nature of the final state interaction
(FSI) of the hit quark with the surrounding nuclear
medium; as a matter of fact, the observation of a nu-
cleus (A − 1) in the ground state (or in a low shell
model excited states) would represent obvious evidence
that the leptoproduced hadrons propagated through
the nucleus (A−1) without strong FSI. Therefore, the
number of observed (A− 1) systems and its variation
with A could provide important information on e.g.
the hadronization length in the medium;

ii) to investigate the A-dependence of possible medium
induced modifications of the DIS structure function of
weakly bound nucleons.

In IA the differential cross section in the laboratory system
has the following form (see Appendix A) [8]

σA1 (xBj , Q2, ~PA−1) ≡ σA1

=
dσA

dxBjdQ2d~PA−1

= KA(xBj , Q2, yA, z
(A)
1 )z(A)

1

×FN/A2 (xA, Q2, p2
1)nA0 (|~PA−1|), (9)

where: Q2 = −q2 = −(ke−k′e)2 = ~q 2−ν2 = 4EeE ′esin2 θ
2 is

the 4-momentum transfer (with ~q = ~ke − ~ke′ , ν = Ee − E ′e
and θ ≡ θ

~̂ke~ke′
); xBj = Q2/2Mν is the Bjorken scaling

variable; p1 ≡ (p10, ~p1), with ~p1 ≡ −~PA−1, is the four
momentum of the nucleon; FN/A2 is the DIS structure
function of the nucleon N in the nucleus A; nA0 (|~PA−1|)
is the 3-momentum distribution of the bound nu-
cleon; KA(xBj , Q2, yA, z

(A)
1 ) is the following kinematical

factor
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KA(xBj , Q2, yA, z
(A)
1 ) =

4α2

Q4

π

xBj
·
(
y

yA

)2

×
[
y2
A

2
+ (1− yA)−

p2
1x

2
Bjy

2
A

z
(A)2
1 Q2

]
, (10)

and

y = ν/Ee , yA = (p1 · q)/(p1 · ke) (11)

xA =
xBj

z
(A)
1

, z
(A)
1 =

p1 · q
Mν

. (12)

Nuclear effects in (9) are generated by the nucleon mo-
mentum distribution nA0 (|~PA−1|), and by the quantities
yA and z

(A)
1 , which differ from the corresponding quan-

tities for a free nucleon (y = ν/Ee and z
(N)
1 = 1), if the

off mass shellness of the nucleon (p2
1 6= M2 ) generated

by nuclear binding is taken into account. Equation (9) is
valid for finite values of Q2, and for A = 2 agrees with
the expression used in [7,2] (note, that in [7] the quantity
DN = KA/KN has been used, KN being the quantity
(10) for a free nucleon, which will be discussed later on).

In this paper, we follow the usual procedure consisting
of disregarding the explicit dependence of FN/A2 upon p2

1,
and choose the form of FN/A2 to be the same as for the free
nucleon; within such an approach, the effect of the nuclear
medium will be considered within two main models:

i) the x-rescaling model, which directly follows from
the convolution formula of inclusive scattering, leading to
energy conservation at the hadronic vertex in Fig. 1, i.e.

p10 = MA −
√

(MA−1 + E∗A−1)2 + ~P 2
A−1 , (13)

which, when placed in (11) and (12), leads to the following
structure function for a bound nucleon

F
N/A
2 (xA, Q2, p2

1) = F
N/A
2

(
xBj

z
(A)
1

, Q2

)
(14)

with
z

(A)
1 = (p10 + |~PA−1|η cos θ

~̂PA−1~q
)/M , (15)

and

η = |~q|/ν =

√
1 +

4M2x2
Bj

Q2
. (16)

Since the (A−1) system is detected in a low excited state
(E∗A−1 ' 0) and with low momentum (|~PA−1| << MA−1),
(13) can be safely replaced by

p10 ' (M − Emin)− |
~PA−1|2

2MA−1
, (17)

(15) then becomes

z
(A)
1 ' 1−Emin

M
− |

~PA−1|2
2MMA−1

+
η

M
|~PA−1|cosθ ~̂PA−1~q

(18)

and for a heavy nucleus, for which the recoil term in (18)
is negligibly small, one has

z
(A)
1 ' 1− Emin

M
+

η

M
|~PA−1|cosθ ~̂PA−1~q

. (19)

Moreover, being Emin
M << 1, it can be concluded that

the structure functions (14) will exhibit almost no A-
dependent effects, apart from the case of the few nucleon
systems (A=2,3,4), for which the recoil term in (18) can-
not be disregarded. In the Bjorken limit (Q2 → ∞, ν →
∞, xBj = const, ν ∼ |~q|), η → 1)

z
(A)
1 = (p10 + |~PA−1| cos θ

~̂PA−1~q
)/M. (20)

Note that (20) can also be written as (E∗A−1 = 0 in the
processes we are considering)

z
(A)
1 =

MA

M
− MA−1zA−1

M
(21)

where

zA−1 =

√
~P 2
A−1 +M2

A−1 − |~PA−1| cos θ
~̂PA−1~q

MA−1
(22)

is the light cone momentum of the A−1 recoiling nucleus.
(21) is nothing but the energy conservation of the process

ν +MA =
√
M2
X + (~p1 + ~q)2 +

√
M2
A−1 + ~p2

1 (23)

in the Bjorken limit, whereMX is the invariant mass of the
produced hadronic state X; in the case of the deuteron,

the term
|Emin|
M

can be disregarded, so that MA/M ' 2

and the well known relation z
(2)
1 = 2 − z2, where z2 =

(
√
|~p2|2 +M2−|~p2| cos θ

~̂p2~q
)/M , and ~p2 is the momentum

of the recoiling nucleon, is recovered.
ii) the Q2−rescaling model [15], which is based on the

idea of a medium modification of the Q2−evolution equa-
tions of QCD, leading to

F
N/A
2 (x,Q2) = FN2 (x, ξA(Q2)Q2) , (24)

where the Q2 dependence of the quantity ξA(Q2) is de-
termined so as to satisfy the QCD evolution equations
on both sides of (24), with the additional hypothesis that
the quark confinement radius for a bound nucleon (λA) is
larger than that for a free nucleon (λN ), according to the
ansatz
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λ2
A

λ2
N

=
µ2
N

µ2
A

= ξA(µ2
A) , (25)

where µA and µN are the lower momentum cutoffs for
the bound and free nucleons, respectively. The following
relation can then be obtained

ξA(Q2) =
(
λ2
A

λ2
N

) ln(Q2/Λ2
QCD)

ln(µ2
A
/Λ2
QCD

)

, (26)

where ΛQCD is the universal QCD scale parameter.
To sum up, in the Q2-rescaling model an explicit A

dependence is provided by (26) whereas, in the x-rescaling
model, the A-dependence of FN/A2 is generated implicitly
by the momentum |~PA−1| of the detected A − 1 system
(cf. (18)).

We will now discuss a series of processes, which could
in principle provide useful insight on the following basic
issues: i) the nature and the relevance of FSI in DIS; ii) the
validity of the spectator mechanism leading to the cross
section (9); iii) the medium induced modifications of the
nucleon structure function; iv) the origin of the EMC
effect.

3.1 Checking the spectator mechanism in the
semi-inclusive process A(e, e′(A− 1))X

The validity of the spectator mechanism could experimen-
tally be checked in the following way. Let us consider the
cross section (9) for two different nuclei A and A′, and the
same values of xBj , Q2 and |~PA−1| = |~PA′−1|. Consider
now the ratio

R(xBj , Q2, |~PA−1|, z(A)
1 , z

(A′)
1 , yA, yA′)

=
σA1 (xBj , Q2, |~PA−1|, z(A)

1 , yA)

σA
′

1 (xBj , Q2, |~PA−1|, z(A′)
1 , yA′)

=
KA

KA′

z
(A)
1 F

N/A
2 (xA, Q2, p2

1)

z
(A′)
1 F

N/A′

2 (xA′ , Q2, p2
1)

nA0 (|~PA−1|)
nA
′

0 (|~PA−1|)
, (27)

with yA and z
(A)
1 defined in (11) and (12), respectively.

For reasons that would be clear later on, our aim is to get
rid as much as possible of the various A and A′ dependen-
cies appearing in (27), except the ones provided by the
nucleon momentum distributions. The dependence upon
A and A′ is contained in the quantities z(A)

1 , xA, KA,
and nA0 (|~PA−1|); in order to get rid of the A-dependence
due to the first three quantities let us consider coplanar
kinematics, i.e.

yA = y ·
p10 + η|~PA−1| cos θ

~̂PA−1~q

p10 + η|~PA−1| cos θ ̂~PA−1~ke

, (28)

with

cos θ
~̂PA−1~q

= − cos(θ ̂~PA−1~ke
+ θ

~̂q~ke
);

cos θ
~̂q~ke

=
(

1 +
MxBj
Ek

)
/η . (29)

In the Bjorken limit η → 1, z
(A)
1 = (p10 +

|~PA−1| cos θ
~̂PA−1~q

)/M (cf. (15)), θ
~̂PA−1~q

→ θ ̂~PA−1~ke
, yA →

y, and

KA(xBj , Q2, yA, z
(A)
1 )→ KN (xBj , Q2, y)

=
4α2

Q4

π

xBj
·
[
y2

2
+ 1− y − Q2

4E2
e

]
, (30)

where KN is nothing but the trivial kinematic factor ap-
pearing in the DIS eN - inclusive cross section; the cross
section (9) thus becomes(

dσA

dxBjdQ2d~PA−1

)
Bj

= KN (xBj , Q2, y)z(A)
1

× F
N/A
2 (xBj/z

(A)
1 , Q2)nA0 (|~pA−1|),

(31)

with the A-dependence now appearing only in F
N/A
2 ,

nA0 (|~pA−1|) and z(A)
1 . The latter dependence, however, can

be eliminated by considering that (18) reduces (due to

Emin/M << 1 ) to z(A)
1 ' 1− |~PA−1|2

2MMA−1
+ |

~PA−1|
M cosθ

~̂PA−1~q
,

so that by by fixing |~PA−1|, and properly changing θ
~̂PA−1~q

,

the condition z(A)
1 ∼ z(A′)

1 can easily be achieved. As a re-
sult, the Bjorken limit of (27) becomes

RBj(xBj/z
(A)
1 , Q2, |~PA−1|, A,A′)

=
F
N/A
2 (xBj/z

(A)
1 , Q2)

F
N/A′

2 (xBj/z
(A′)
1 , Q2)

nA0 (|~PA−1|)
nA
′

0 (|~PA−1|)

→ nA0 (|~PA−1|)
nA
′

0 (|~PA−1|)
≡ R(|~PA−1 |), (32)

where the last step is strictly valid only within the x-
rescaling model, for in the Q2-rescaling model the addi-
tional A and A′-dependences appearing in FN/A2 (x,Q2) =
FN2 (x, ξA(Q2)Q2) does not cancel out, being different
in the numerator and the denominator; such a depen-
dence, however, is overwhelmed by the A-dependence of
n0(|~PA−1|) as it will be shown later on.

We have thus obtained that in the Bjorken limit the
A dependence of the ratio R is entirely governed by
the A dependence of the nucleon momentum distribution
nA0 (|~PA−1|). Since the latter exhibits a strong A depen-
dence for low values of |~PA−1|, a plot of R versus |~PA−1|
should reproduce the behaviour of nA0 (|~PA−1|) which is
fairly well known, so that the experimental observation
of such a behaviour would represent a stringent test of
the spectator mechanism independently of the model for
F
N/A
2 .

Figure 2 illustrates the expected behaviour of the
ratio (32) for A = 2 and different values of A′. The
measurement of the quantity R shown in Fig. 2 would
imply the detection, in coincidence with scattered elec-
trons, of backward recoiling, with momentum ~PA−1, pro-
tons, deuterons, 3He and 12C nuclei resulting from the
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Fig. 2. (a) The ratio R(|~PA−1|) = σ[D(e,e′p)X]
σ[A(e,e′(A−1))X]

(32) for different nuclei A, viz 3H, 4He and 12C, assuming that DIS took place

on a neutron. The ratio is plotted versus the value of the momentum PA−1 ≡ |~PA−1| = |~PA′−1| of the nucleus emitted backward.
(b) The same as in (a) but on a linear plot for the targets 3H and 4He (in this and in the following Figures θPA−1 ≡ θ ~̂PA−1~q

)

processes D(e, e′p)X, 3H(e, e′D)X, 4He(e, e′3He)X and
12C(e, e′11C)X, respectively, with the DIS scattering pro-
cesses supposed to occur on a neutron. 1 Since the results
presented in Fig. 2 were obtained in the Bjorken limit,
where KA = KA′ = KN , let us analyse at which value of
Q2 such an equality is fulfilled. To this end, in Fig. 3 the
ratio KA/KN is shown vs. Q2 for of A = 4. It can be seen
that at Q2 ' 5GeV 2 KA and KN differ by 5% only. The
cross sections corresponding to the processes considered
in Fig. 2 are presented in Fig. 4.

From the results we have exhibited, it is clear that
the observation of recoiling nuclei in the ground state,
with a |~PA−1|-dependence similar to the one predicted
by the momentum distributions, would represent a strin-
gent check of the spectator mechanism, which, in turns,
would indicate the absence of significant FSI between the
lepto-produced hadronic states and the nuclear medium.
The experimental observation of (A − 1) nuclei in the
ground states would represent a strong indication that the
hadronization length is larger than the effective nuclear
dimension, since if the hit quark hadronizes inside the nu-
cleus, the latter is expected to be strongly excited. Of par-
ticular relevance, in this respect, would be the processes
3He(3H)(e, e′D)X, for if FSI plays an important role, the
weakly bound final state deuteron will easily break down.
It is clear, therefore, that the experimental observation of

1 Note that the condition z
(A)
1 /z

(A′)
1 = 1 cannot be achieved

if both θ
~̂PA−1~q

are fixed, so that in Fig. 2 z
(A)
1 /z

(A′)
1 is a func-

tion of PA−1; however the PA−1-dependence of the quantity

z
(A)
1 F

N/A
2 (xBj/z

(A)
1 )/z

(A′)
1 F

N/A′

2 (xBj/z
(A′)
1 ) is at most of the

order 5 percents and the dependence of R(|~PA−1|) upon |~PA−1|
is entirely provided by the momentum distributions.

Fig. 3. The ratio of the kinematical factor KA(xBj , Q
2, yA,

z
(A)
1 ), (10), for 4He, to the same quantity for a free nucleon
KN (xBj , Q

2, y), (30), vs. Q2 for two values of xBj

the exclusive process A(e, e′(A−1)gr)X is strong evidence
of the smallness of FSI. Although recent calculations [16]
and experimental data [17] seem to indicate that FSI on a
complex nucleus are small in semi inclusive DIS, particu-
larly when the low momentum hadrons are detected back-
ward, the situation is not clearly settled, and therefore the
observation of protons and deuterons emitted backward
in the processes D(e, e′p)X, 3He(e, e′D)X with a |~PA−1|
dependence shown in Fig. 2, would represent strong indi-
cation of the absence of FSI. The situation here is different
from the usually investigated semi-inclusive DIS processes
A(e, e′N)X where the detected nucleon can originate not
only from a correlated pair, as originally suggested [2],
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Fig. 4. The cross section for the process A(e, e′(A− 1))X, (9)
on different targets with the nucleus (A−1) emitted backward

with momentum PA−1 ≡
∣∣∣~PA−1

∣∣∣
but from competitive processes as well, such as nucleon
current and target fragmentations [4,5].

Let us now discuss the possibility to obtain informa-
tion on the nucleon structure function of a weakly bound
nucleon by means of the process A(e, e′(A− 1))X.

3.2 Investigating the structure functions of weakly
bound nucleons by the process A(e, e′(A− 1))X

Consider the following quantity

RA(xBj , x′Bj , Q
2, |~PA−1|)

≡ σA1 (xBj , Q2, |~PA−1|, z(A)
1 , yA)

σA1 (x′Bj , Q2, |~PA−1|, z(A)
1 , yA)

(33)

which represents the ratio between the cross section (9)
on the nucleus A considered at two different values of the
Bjorken scaling variable. It is clear that all terms of (9),
but the nucleon structure functions, cancel out in the ra-
tio, and one has

RA(xBj , x′Bj , z
(A)
1 , Q2) =

x′Bj
xBj

F
N/A
2

(
xBj

z
(A)
1

, Q2

)
F
N/A
2

(
x′Bj

z
(A)
1

, Q2

) (34)

in the x−rescaling approach, and

RA(xBj , x′Bj , Q
2) =

x′Bj
xBj

F
N/A
2

(
xBj , ξA(Q2)Q2

)
F
N/A
2

(
x′Bj , ξA(Q2)Q2

)
= constant, (35)

in the Q2−rescaling model. (34) and (35) will in gen-
eral exhibit a different |~PA−1| dependence: (35) will be
a |~PA−1|-independent constant different for different nu-
clei, whereas (34) will depend both upon A and |~PA−1|,
due to the dependence of z(A)

1 upon |~PA−1| (cf. (15) with
η = 1). Let us consider the ratio (33) for the deuteron
and for a complex nucleus; placing (17) in (15), one ob-

tains z(2)
1 ' 1 − EDM −

|~PA−1|2
2M2 + |~PA−1|

M cosθ
~̂PA−1~q

and a

strong |~PA−1| dependence will originate from the recoil
and the angle-dependent terms; for a complex nucleus;
on gets z(A)

1 ' 1− Emin
M + |~PA−1|

M cosθ
~̂PA−1~q

, which appre-

ciably differs from unity only for θ
~̂PA−1~q

= 180o and/or

large values of |~PA−1|. Thus, the |~PA−1|-dependence of
the ratio (34) can be changed by varying the dependence

of z(A)
1 upon |~PA−1|; in such a way, xBj

z
(A)
1

6= x′Bj

z
(A)
1

and RA

will differ from a constant. The ratio (34), for A = 2 and
A = 40, is shown in Figs. 5 and 6 in correspondence of two
values of the emission angle θ

~̂PA−1~q
of the nucleus A − 1

(θ
~̂PA−1~q

= 90o and 180o), and xBj = 0.2 and x′Bj = 0.5. It

can indeed be seen that: i) in the Q2-rescaling model the
ratio is independent of |~PA−1|, ii) when θ

~̂PA−1~q
= 90o, the

x−rescaling model predicts a |~PA−1|-independent ratio for
40Ca (z(40)

1 ' 1) and a strongly |~PA−1|-dependent ratio for

D (z(2)
1 ' 1 − |~PA−1|2

2M2 ); when θ
~̂PA−1~q

= 180o, also the ra-

tio for 40Ca becomes strongly |~PA−1|-dependent, for, now,

z
(40)
1 ' 1− |~PA−1|

M . To sum up, it can be seen that the semi-
inclusive process allows one to choose a variety of kine-
matical conditions which enhance various aspects of the
problem. We have seen in Sect. 3.2 that, due to the small
values of | ~PA−1| and Emin, the process A(e, e′(A − 1))X
on a complex nucleus is characterized by z

(A)
1 ' 1 when

θ
~̂PA−1~q

= 90o; as a result, the off-mass-shell dependence of

F
N/A
2 disappears (cf. full curve in Fig. 5); the off–mass–

shell dependence of FN/A2 can on the contrary be enhanced
if θ

~̂PA−1~q
= 180o, for an appreciable contribution from the

last term of (18) is now generated; if so, however, the ra-
tio (34) for a complex nucleus will not appreciably differ
from that of the deuteron (cf. full curves in Fig. 6), since
off-mass-shell effects are solely due to the nucleon momen-
tum |~PA−1|, and not to medium effects provided by e.g.
the nucleon binding (Emin/M << 1). Possible modifica-
tions of FN/A2 due to medium effects, will be discussed in
the next Section.
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Fig. 5. The ratio RA(xBj , x
′
Bj , z

(A)
1 , Q2) (33) for A = 2 and

A = 40, xBj = 0.2 and x′Bj = 0.5, Q2= 20 GeV/c2, plotted
versus the momentum of the nucleus (A − 1) emitted at 90o.
The full and dashed curves were obtained within the binding
(x-rescaling) and Q2-rescaling models, respectively

4 The A(e, e′N2(A− 2))X process

In the previous Section we have discussed the case of
weakly bound, non-correlated nucleons. In the present sec-
tion we will investigate the semi inclusive processes occur-
ring on a strongly correlated nucleon pair. To this end, let
us consider the process depicted in Fig. 1 (b), which repre-
sents the absorption of the virtual photon by a correlated
nucleon N1 (with high momentum |~PA−1|), followed by
the emission of the partner nucleon N2 (with momentum
~p2), and by the recoil of the (A− 2) system, with low mo-
mentum ~PA−2 = −(~PA−1 +~p2) and low excitation energy.
The experimental investigation of such a process would re-
quire the coincidence detection of the scattered electron,
the nucleon N2 and the system (A− 2).

The differential cross section of the process reads as
follows

σA2 (xBj , Q2, ~PA−2, ~p2) ≡ dσA

dxdQ2d~PA−2d~p2

=

KA(xBj , Q2, yA, z
(A)
1 )z(A)

1 F
N/A
2 (xBj/z

(A)
1 , Q2)

nAcm(|~PA−2|)nArel.(|~p2 + ~PA−2/2|) (36)

Fig. 6. The same as in Fig. 5 for nuclei (A− 1) emitted back-
ward

where PN1,N2 is the two-nucleon spectral function, defined
in Section II, and KA, y, yA, xA, and zA1 are defined by
(10), (11), (12), and (15)with

~p1 = −~PA−1 = (~p2 + ~PA−2) . (37)

and

p10 = MA −
√
M2 + ~p2

2 −
√
M2
A−2 + ~P 2

A−2. (38)

In the Bjorken limit η = 1 one has

z
(A)
1 =

MA

M
− z2 −

MA−2

M
zA−2, (39)

where

z2 =

√
M2 + ~p2

2 − |~p2| cos θ
~̂p2~q

M
(40)

and

zA−2 =

√
M2
A−2 + ~P 2

A−2 − |~PA−2| cos θ
~̂PA−2~q

MA−2
(41)

are the light cone momentum fraction of nucleon N2 and
nucleus (A−2), respectively. Note that (39) is nothing but
the energy conservation of the process

ν +MA =
√
M2
x + (~p1 + ~q)2 +

√
M2 + ~p2

2

+
√
M2
A−2 + ~P 2

A−2 (42)
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in the Bjorken limit. In the non relativistic approximation
one obtains

z
(A)
1 ' 1− E

M
− |~PA−1|2

2(A− 1)M2
+
|~PA−1|
M

cosθ
~̂PA−1~q

, (43)

with E = (E(2)
th +E∗A−1). Due to the small value of ~kcm =

−~PA−2, we can write E∗A−1 '
(A−2)

2M(A−1) |~PA−1|2, and by

considering that ~PA−1 = −(~p2 + ~PA−2) (cf. (37) ), one
gets:

E = E
(2)
th +

(A− 2)
2M(A− 1)

[
|~p2|2 +

(
A− 1
A− 2

)2

~P 2
A−2

+ 2
A− 1
A− 2

|~p2||~PA−2|cosθ ̂
~p2 ~PA−2

]
. (44)

It should be stressed that the nucleon structure function
F
N/A
2 (xBj/z

(A)
1 , Q2) appearing in (9) and (36) reflects dif-

ferent physical situations, for in the first case FN/A2 rep-
resents the quark distribution in a weakly bound, quasi-
free nucleon, whereas, in the second case, it represents the
quark distribution in a strongly bound nucleon, which, in
principle, can undergo, because of binding, off-mass-shell
deformations (see, for instance [18,19]). Therefore, if the
nucleon structure function could be extracted from the
cross section (36) and compared with the one obtained
from the cross section (9), a direct comparison of nucleon
structure functions for weakly bound and deeply bound
nucleons could, for the first time, be carried out.

It should be pointed out that, since yA depends upon
the high momentum |~p2|, the factor KA(xBj , Q2, yA) may
strongly differ from KN (xBj , Q2, y), unless one of the
two following kinematical conditions are chosen: i) small
values of xBj ; ii) the Bjorken limit. We found that at
Q2 = 20GeV 2/c2 and xBj = 0.05, the direction of the mo-
mentum transfer ~q coincides, in the frame where the target
is at rest, with the electron beam direction (θ

~̂k~q
≈ 20 );

in this case, yA ' y and KA ' KN (our numerical esti-
mates show that KA/KN varies from 0.99 at |~p2| = 350
MeV/c to 0.96 at |~p2| = 1 GeV/c); adopting realistic fig-
ures for an electron-ion collider, i.e. Ee ≈ 5 GeV, TN =
(kinetic energy per nucleon) ≈ 25 GeV [10] in its labora-
tory system, the chosen values of Q2 and xBj correspond
to E ′e ≈ 2GeV ; θ

~̂k~k′
≈ 900 (in the nucleus rest frame

they would correspond to Ee ∼ 260 GeV, Ee′ ≈ 50 GeV;
θ
~̂k~k′
≈ 20).

4.1 Checking the spectator mechanism in the
semi-inclusive process A(e, e′N2(A− 2))X

The validity of (36) can experimentally be tested by tak-
ing advantage of the observation [20] that for high values
of |~PA−1| the nucleon momentum distribution for a com-
plex nucleus turns out to be the rescaled momentum dis-
tribution of the deuteron, with very small A dependence
(unlike what happens for the low momentum part of n(k)

Fig. 7. The ratio (45), calculated at Q2 = 20 GeV/c2, |~PA−2|
= |~PA′−2| = 50 MeV/c, xBj = 0.4, θ ̂

~p2 ~PA−2
= θ ̂

~p2 ~PA′−2
= 10o,

for A = 12, 40 and 56 and A′ = 4, versus |~prel| = |~p2 + ~PA−2|
(|~p2| is varied)

(cf. Fig. 2)). Let us therefore consider the following ratio,
where |~PA−2| = |~PA′−2|:

R(xBj , Q2, ~PA−2, ~p2, z
(A)
1 , z

(A′)
1 )

≡ σA2 (xBj , Q2, ~PA−2, |~p2|)
σA
′

2 (xBj , Q2, ~PA−2, |~p2|)

=
z

(A)
1

z
(A′)
1

F
N/A
2 (xBj/z

(A)
1 , Q2)

F
N/A′

2 (xBj/z
(A′)
1 , Q2)

· n
A
rel.(|~prel.|)
nA
′

rel.(|~prel.|)
· n

A
cm(|~PA−2|)
nA′cm(|~PA−2|)

, (45)

where |~prel| = |~p2 + ~PA−2/2|. If |~PA−2| is fixed, then, pro-
vided F

N/A
2 = F

N/A′

2 , the ratio, measured at prel ≥ 2− 3
fm−1, would be roughly a constant, since nArel. ∝ nD for
any A. The condition F

N/A
2 = F

N/A′

2 can be achieved
by properly choosing, for A and A′, the values of ~p2 and
~PA−2 appearing in (44), so as to make z(A)

1 ' z
(A′)
1 , i.e.

F
N/A
2 ' F

N/A′

2 (note, moreover, that for large values of
|~PA−1| and large values of A, the dependence of z(A)

1 upon
A is unessential). To summarize, the cross-section (36)
should be measured for the systems A and A′ at the same
values of xBj , Q2 and ~PA−2, changing the values of the
angle θ ̂

~p2 ~PA−2
and |~p2| so as to vary |~prel| = |~p2 + ~PA−2/2|,

keeping z
(A)
1 = z

(A′)
1 . If (36) is basically correct, the ra-

tio (45) plotted versus |~prel| ≥ 2− 3 fm−1 should exhibit
(as shown in Fig. 7) the same deuteron-like behaviour for
any two nuclei in the range, say, 2 < A < 208. If such a
deuteron – like behaviour of (45) is experimentally found,
it would represent a stringent test of the spectator mech-
anism. A word of caution is however in order here: the
FSI between the nucleon N2 and the nucleus (A− 2) will
presumably affect the ratio (45). Calculations of the FSI
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within the Glauber multiple scattering approach are in
progress and will be reported elsewhere; preliminary re-
sults indicate that in the region of the considered kinemat-
ics, the replacement of the undistorted two-body Spectral
Function with the distorted one, mainly affects the abso-
lute value of the ratio (45).

4.2 Investigating the structure functions of deeply
bound nucleons by the process A(e, e′N2(A− 2))X

As in the case of the A(e, e′(A − 1))X process, in order
to investigate the structure function of a (deeply) bound
nucleon, we have to figure out experimentally measurable
quantities which could provide information on FN/A2 with-
out contaminations from the nucleon momentum distribu-
tions, or other momentum dependent terms. To this end,
we use the analog of the ratio (33) which, within the con-
volution model, assumes the following form

R(xBj , x′Bj , Q
2, |~PA−2|, |~p2)| ≡ σA2 (xBj , Q2, |~PA−2|, |~p2|)

σA2 (x′Bj , Q2, |~PA−2|, |~p2|)

=
x′Bj
xBj

F
N/A
2 (xBj/z

(A)
1 , Q2)

F
N/A
2 (x′Bj/z

(A)
1 , Q2)

.

(46)

It should be pointed out that, although the r.h.s. of
(34) and (46) look formally the same, they differently de-
pend upon the nucleon binding, for, we reiterate, in (34)
one has (cf. (18))

z
(A)
1 ' 1−Emin

M
− |~PA−1|2

2(A− 1)M2
+
|~PA−1|
M

cosθ
~̂PA−1~q

. (47)

with ~PA−1 ≡ −~p1, whereas in (46), one has (cf. (47) )

z
(A)
1 ' 1− E

M
− |~PA−1|2

2(A− 1)M2
− |

~PA−1|
M

cosθ
~̂p1~q

, (48)

with ~PA−1 = −(~p2 + ~PA−2) and E given by (44). We
have seen in Section 3.2 that, due to the small values
of | ~PA−1| and Emin, the process A(e, e′(A − 1))X on
a complex nucleus is characterized by z

(A)
1 ' 1, when

θ
~̂PA−1~q

= 90o, with the result that the off-mass-shell de-

pendence of FN/A2 disappears (cf. the full line for 40Ca in
Fig. 5); the off–mass–shell dependence of FN/A2 can be en-
hanced if θ

~̂PA−1~q
= 180o, for an appreciable contribution

from the last term of (48) is generated; if so, however, the
ratio (34) for a complex nucleus will not appreciably differ
from that of the deuteron (cf. the full curves in in Fig. 6),
since off-mass-shell effects are solely due to the nucleon
momentum |~PA−1|, with no contribution from nucleon
binding (Emin/M << 1); a totally different situation is
expected to occur in the process A(e, e′N2(A − 2))X; as
a matter of fact, in this case the “binding term” E/M

in (48) will generate an appreciable contribution to z(A)
1 ,

due to the large value of |~p2| associated to nucleon-nucleon
correlations (or, equivalently, to high values of the removal
energy E). Thus, in order to check whether the structure
for a deeply bound nucleon would dynamically differ from
the one for a weakly bound one, the ratios (34) and (46) for
a given nucleus should be plotted versus the same value
of z(A)

1 ; in such a way, the off-mass-shell dependence of
F
N/A
2 is quantitatively the same, but it originates from

different contributions to z(A)
1 , viz. the momentum ~PA−1,

for the weakly bound nucleon, and the binding effect E,
for a deeply bound nucleon. If a different behaviour of the
two ratios is found, this would represent strong evidence
that the structure functions for weakly and deeply bound
nucleons are different. Here, again, the N2 − (A − 2) FSI
should be taken into account, although its effect is ex-
pected to be canceled in the ratio (46).

Another possibility to investigate the nucleon structure
functions would be to analyze the following ratio

R2 =
σA2
σD1

= (49)

z
(A)
1 F

N/A
2 (xA, Q2, p2

1)nAcm(|~PA−2|)nArel.(|~p2 + ~PA−2|)
z

(D)
1 F

N/D
2 (xD, Q2, p2

1)nD(|~PA−1| = |~p2 + ~PA−2|)
.

The results for A = 12 are presented in Fig. 8, in cor-
respondence of two values of |~p2|, for fixed values of
the following kinematical variables: |~PA−2| = 50MeV/c,
θp̂2q = 900, θ ̂p2PA−2

= 1800, and Q2 = 20GeV 2/c2; the
full and dashed curves refer to the x- and Q2-rescaling
models, respectively. Let us first analyze the results
predicted by the first model, viz. FN/A2 (xA, Q2, p2

1) →
F
N/A
2 (xBj/z

(A)
1 , Q2, p2

1) with z(A)
1 given by (43). The value

of the three-momentum of the (A−1) fragment (a nucleon)
in the A(e, e′(A− 1))X cross section off the deuteron, has
been chosen the same as the three-momentum of the inter-
acting nucleon ~PA−1 in the case of the A(e, e′, N2(A−2))X
process off 12C; by this choice, the removal energy which
appears in z

(A)
1 (48) is almost equal to the recoil energy

appearing in zD, so that z(A)
1 ' zD1 ; by this way one should

expect a constant behaviour of R2 (note that KA ' KD,
for in both cases one has to do with the same values of
~PA−1); the deviation from a constant exhibited by the
full lines in Fig. 8 is due to the fact that, with the cho-
sen kinematics, z(D)

1 > z
(A)
1 . Again, the observation of

a behaviour different from the one presented in Fig. 8
would indicate a dependence of FN/A2 upon the binding
energy. Let us now consider the prediction by the Q2-
rescaling model. For the latter, we have considered the
model of [19], where the renormalization scale associated
to the momentum of a bound nucleon is given by its in-
variant mass, p2

1 6= M2. Such an assumption leads to the
ansatz F

N/A
2 (xA, Q2, p2

1) = FN2 (xA, ξA(Q2, p2
1)Q2) with

ξA(Q2, p2
1) = (M2/p2

1)(α(p2
1))/(α(Q2)), i. e. to an explicit

dependence upon the off–shellness of the nucleon. Since
the invariant mass of a deeply bound nucleon strongly
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Fig. 8. The ratio R2 (49), for 12C versus xBj for fixed values
of: i) the momentum of the recoiling (A − 2) system PA−2 ≡
|~PA−2| = 50 MeV/c; ii) the momentum of the recoiling nucleon
N2, p2 ≡ |~p2| = 400 MeV/c (a) and 500 MeV/c (b); iii) the
emission angle of nucleon N2 (θp2 ≡ θ

~̂p2~q
= 90o). The full

lines correspond to the binding (x-rescaling) model and the
dotted lines to the Q2-rescaling model with explicit off-shell
dependence of the nucleon structure function

differs from M2, the ratio (49) gets the strong xBj and
|~p2| dependence shown in Fig. 8.

5 The local EMC effect

In the binding model (x-rescaling) of the EMC ef-
fect, the slope of the ratio R(xBj , Q2) = FA2 (xBj , Q2)/
(AFN2 (xBj , Q2)) is generated by the average value of the
nucleon removal energy < E >: the larger the value of
< E >, the stronger the EMC effect [2]. Since NN cor-
relations produce high values of E, and therefore strongly
affect the value of R [21], it would be extremely interest-
ing to measure the so-called local EMC (LEMC) effect,
i.e., the separate contribution to the ratio R of the weakly
and deeply bound nucleons. Several calculations of the lo-
cal EMC effect appeared [22,23], and attempts have also
been made to compare them with experimental data on
neutrino-nucleus DIS [24], but the comparison was not
conclusive due to the apparently very large contamina-
tions of the data from non nuclear effects, like e.g. quark
fragmentation.

The semi-inclusive A(e, e′(A − 1))X and A(e, e′,
N2(A − 2))X processes, offer the possibility to investi-

gate the LEMC effect. As a matter of fact, let us con-
sider the cross sections (9) and (36) for a nucleus A and
the cross section (9) for the deuteron, integrated over a
certain interval of ~PA−1, with ~PA−1 = −~p1 in (9),and
~PA−1 = −(~p2 + ~PA−1), in (36). The following two quanti-
ties

R0(xBj , Q2) =

∫ b
a
σA1 (xBj , Q2, ~PA−1)d~PA−1∫ b

a
σD1 (xBj , Q2, ~PA−1)d~PA−1

(50)

R1(xBj , Q2) =

∫ b
a
σA2 (xBj , Q2, ~PA−2, ~p2)d~PA−2d~p2∫ b
a
σD1 (xBj , Q2, ~PA−1)d~PA−1

. (51)

will therefore provide the LEMC effect, for they represent
the contribution from weakly bound (50) and strongly
bound (51) nucleons, respectively [23]. Since the calcu-
lation of (51) is a bit involved, we will consider a more
restricted type of LEMC, namely the separate contribu-
tions of the EMC effct from the various shells of a complex
nucleus, i.e. the separate contribution of the various shells
to the ratio R0 [22]. This means that we will assume that
the energy resolution in the process A(e, e′(A − 1))X is
such, that the contribution to the ratio R0 due to the
ground state, and to the excited states corresponding to
the hole state of the target, can experimentally be sep-
arated. In what follows the 12C nucleus will be consid-
ered assuming that DIS occured on a neutron; this means
that the final nucleus to be detected is 11C in the ground
state (deep inelastic scattering on a p-shell neutron) and
in an excited state with excitation energy of about 20MeV
(deep inelastic scattering on a s-shell neutron). We have
therefore calculated the ratio(50) using realistic Hartree-
Fock momentum distributions for the s and p shells with
single-particle energies ε0s = 36MeV and ε0p = 16MeV .
The results are presented in Fig. 9, where the usual inclu-
sive EMC ratio, i.e. (50) integrated over the full space, is
compared with the separate contribution from the s and
p shells; it can be seen that, in agreement with [23], the
s shell exhibits a stronger EMC effect, but since in 12C
there are 4 s shell and 8 p-shell nucleons, the total EMC
effect is less. In what follows, we will consider the ratio R0

integrated in a restricted space, viz 0 < |~PA−1| < 2 fm−1

and 0o < θ
~̂PA−1~q

< 20o (the nucleus (A-1) is emitted for-

ward) and 160o < θ
~̂PA−1~q

< 180o (the nucleus (A-1) is

emitted backward); in Fig. 10 the forward and backward
ratios are compared with the full inclusive ratio, and it
can be seen that the latter results from the sum of two
almost equal contributions. In what follows, only back-
ward emission will be considered, for this is expected to
be less affected by FSI between the (A-1) nucleus and
the hadrons resulting from quark hadronisation. The semi-
inclusive backward ratio is shown in Fig. 11 together with
the separate contributions from the s and p shells; it can
be seen that not only the shell contributions are well sep-
arated, but that the LEMC effect is much larger than the
usual EMC effect. In order to give a flavor of the order
of magnitude of the cross sections involved, these are pre-
sented in Fig. 12.
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Fig. 9. The inclusive local EMC effect in 12C. The full curve
represents the inclusive EMC ratio due to the mean field nucle-
ons in 12C, i.e. (50) integrated over all space (0 ≤ PA−1 ≤ ∞,
0 ≤ θpA−1 ≤ π), whereas the dashed and dotted lines represent
the contribution from 1p and 1s-shell nucleons, respectively

Fig. 10. The seminclusive EMC ratio σ(12C)/σ(D) ≡
Ro(xBj , Q

2), (50) corresponding to nuclei emitted backward
and forward, in the kinematical ranges shown in the Figure.
The full curve is the usual inclusive EMC ratio

Fig. 11. The backward seminclusive local EMC effect on 12C
i.e. the contribution to the ratio Ro (50) of the nuclei (A− 1)
emitted backward in the range 160o ≤ θA−1 ≤ 180o, PA−1 ≤
2fm−1. The dashed curve represents the usual inclusive EMC
ratio ((50), integrated over all space)

6 Summary and Conclusions

In the present paper, two new types of semi-inclusive DIS
processes of leptons off complex nuclei, have been inves-
tigated. The first one, the process A(e, e′(A − 1))X, rep-
resents DIS on a shell model, low momentum and low re-
moval energy nucleon, followed by the coherent, low mo-
mentum recoil, of the spectator nucleus (A − 1) in the
ground, or in a low energy excited state; the second one,
the processs A(e, e′N2(A− 2))X, represents DIS on a nu-
cleon N1 of a correlated pair, followed by the emission of
the high momentum nucleon N2 of the pair, and the low
momentum spectator nucleus (A− 2) in the ground, or in
a low energy excited state. The experimental investigation
of these processes would imply the coincidence detection
of e′ and (A− 1), in the first case, and e′, N2 and (A− 2),
in the second case, respectively. We have demonstrated
that both processes can provide relevant information on
the following topics:

i) the relevance and nature of the FSI between the
hadronic jet with the nuclear medium;

ii) the validity of the spectator model;
iii) the off-shell deformation of the nucleon structure

function in the nuclear medium and the A-dependence of
the ratio of the n/p structure functions;

iv) the origin of the EMC effect.
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Fig. 12. The seminclusive cross section (10)
resulting from DIS on s-shell (dashed) and p-
shell (full) nucleons of 12C. The results are
plotted versus the emission angle θPA−1 ≡
θ
~̂PA−1~q

of the recoiling (A−1) nuclei, for fixed

value of xBj ≡ x and in correspondence of two

values of the momentum PA−1 ≡ |~PA−1| of the
recoiling (A− 1) nucleus

As a matter of facts :
i) if nuclei (A − 1) and (A − 2) are detected in coin-

cidence with the scattered electron, this is a clear signal
of the absence of FSI; at the same time, the amount of
observed nuclei, i.e. the cross section, will of course de-
pend upon the FSI, therefore the investigation of its abso-
lute value and its dependence upon A, would allow one to
investigate the nature of the FSI, e.g. the hadronisation
lenght of the hit quark;

ii) by a proper choice of the kinematics, the ratio of
the cross section σ[A(e, e′(A − 1))X] to the cross section
σ[D(e, e′N)X], measured versus |~PA−1| = |~pN | ≡ |~p|, at a
fixed value of the Bjorken scaling variable xBj , has been
shown to depend, within the Spectator model approach,
only upon the low momentum part of the nucleon mo-
mentum distributions nA(|~p|) and nD(|~p|), and since these
sharply differ for |~p| ≤ 1fm−1, the ratio should exhibit a
strong |~p| dependence (cf. Fig. 2), whose experimental ob-
servation would represent a stringent check of the validity
of the spectator model. At the same time, the ratio of
the cross section σ[A(e, e′N2(A − 2))X] to the cross sec-
tion σ[D(e, e′N)X] measured versus |~prel| = |~p2+ ~PA−2/2|
for fixed value of |~PA−2| and fixed value of xBj , has been
shown to depend only upon the relative momentum distri-
butions nArel(|~prel|) and nD(|~prel|), so that the ratio should
exhibit a |~prel| dependence similar for all values of A, for
nArel ∼ nD for |~prel| ≥ 2fm−1 (cf. Fig. 7); again, the exper-
imental observation of such a scaling behaviour would also
represent a stringent test of the Spectator model mecha-
nism;

iii) it has been shown that by a proper choice of the
kinematics, the ratio of the cross sections for the same
nucleus but at two different values of xBj , becomes inde-
pendent of the nuclear quantities, being determined only
by the nucleon structure function; it has therefore been

demonstrated, in the case of the process A(e, e′(A−1))X,
that such a ratio could provide significant information on
different models of the structure function of weakly bound
nucleons (cf. Figs. 5 and 6). Eventually (cf. Fig. 8) it has
been shown that the ratio of the cross section for the pro-
cess A(e, e′N2(A − 2))X to the deuteron cross section,
could provide information on the binding energy depen-
dence of the nucleon structure functions;

iv) the local EMC effect has been investigated (cf. Figs.
9-12), pointing out that that the processes A(e, e′(A −
1))X and A(e, e′N2(A − 2))X integrated over a proper
value of the momenta of the detected particles (A − 1,
N2 and A − 2) will provide, for the first time, the sep-
arate contribution to the EMC ratio of the weakly and
deeply bound nucleons, thus providing a stringent check
of the binding model (x-rescaling) of the EMC effect.
Detailed calculations have been performed for the pro-
cess A(e, e′(A− 1))X, demonstrating that in the binding
model, the inclusive EMC effect results from the cancel-
lation of two large contributions from the forward and
backward emitted (A− 1) nuclei (cf. Fig. 10); therefore, a
significant check of the binding model could be provided
by the measurement of the backward ratio which exhibits
a 60 percent deviation from unity instead of the 10 percent
deviation of the usual inclusive EMC effect (cf. Fig. 11).

In closing, we would like to point out that the results
we have exhibited have been obtained with non relativis-
tic momentum distributions and spectral functions. Cal-
culations for the two- and three-body systems including
relativistic effects by a full covariant Bethe-Salpeter ap-
proach and by light-cone spectral functions, respectively,
will be presented elsewhere ([25], [26]).
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A The electron-hadron cross section

In this Appendix the derivation of the semi-inclusive
electron-hadron cross section within the instant-form dy-
namics will be presented.

In the one-photon exchange approximation the cross
section describing the scattering of an electron e from a
hadron A reads as follows:

dσ =
MAme

(PA · ke)
(2π)4δ(4)(PA + ke − ke′ − Pf )

×
∣∣∣∣〈ke′ |ĵµ(0)|ke〉

1
Q2
〈PA|ĴAµ (0)|Pf 〉

∣∣∣∣2
× med

3ke′

Ek′(2π)3
dτf , (A1)

where ĵµ(0) and ĴAµ (0) are the electromagnetic current
operators for the lepton and the hadron, respectively,
MA (PA, EA), and me (ke, Ek′) stand for the masses
(4-momenta, total energy) of the hadron and the elec-
tron in the initial state, ke′ and Pf denote the four-
momenta of the electron and the hadron in the final state,
Q2 = −q2 = −(ke − ke′)2 = ~q 2 − ν2 = 4EkEk′sin2 θ

2 is the
4-momentum transfer, (with ~q = ~ke − ~ke′ , ν = Ek − Ek′
and θ ≡ θ

~̂ke~ke′
), and dτf the phase space volume of all

particles (but the scattered electron) in the final state. In
(A1) the following normalization conditions are used:

Λ+(p) =
p̂+M

2M
, 〈p|p′〉 =

E

M
(2π)3δ3(~p− ~p′),

ū u = 1, u+u =
E

M
. (A2)

where M is the nucleon mass.

A.1 The inclusive cross-section

By placing in (A1) f ≡ X and dτf = 1, in the lab system,
the cross section for the inclusive process A(e, e′)X, i. e.
when only the scattered electron is detected, is obtained

dσ

dΩ′dEk′
=

4α2

Q4

Ek′
Ek

1
2
LµνWA

µν (A3)

where the leptonic tensor, Lµν , is

Lµν = kµk
′
ν + k′µkν − gµν(k · k′), (A4)

and the hadronic tensor, WA
µν , is

WA
µν =

1
4π

∑
αA

∑
X

(2π)4δ(4)(PA + q − pX)

〈αA, ~PA = 0|JAµ (0)|αX~pX〉
〈αX~pX |JAν (0)|αA, ~PA = 0〉. (A5)

The general form of the hadronic tensor, restricted by re-
quirements of gauge-invariance, time-reversal invariance
and parity conservation, depends upon two structure func-
tions WA

i , corresponding to the two independent scalars
of the problem, viz.

WA
µν = WA

1 (ν,Q2)
[
gµν +

qµqν
Q2

]
+
WA

2 (ν,Q2)
M2

P̃Aµ P̃Aν (A6)

where P̃Aµ = pAµ +
qµ(pA · q)

Q2
.

The contraction of the two tensors gives the well known
result:

dσ

dΩ′dEk′
= σMott

[
WA

2 (ν,Q2) + 2WA
1 (ν,Q2) tan2 θ

2

]
(A7)

where

σMott =

(
α cos θ2

2Ek sin2 θ
2

)2

(A8)

is the Mott cross section. Note that the inclusive process
on the nucleon N(e, e′)X, is described by the above for-
mulae with A = N , PA = pN .

A.2 The semi-inclusive cross-section

Let us now discuss the semi-inclusive process of the type
A(e, e′B)X, when another hadron B is detected in coinci-
dence with the electron. We have in this case f ≡ (B,X)
and dτf = MBd

3PB
EB(2π)3 . The relevant hadronic four-momenta

involved in the process are PB ≡ (P 0
B ,
~PB), with P 0

B =√
(MB + E∗B)2 + ~P 2

B , MB and E∗B being, respectively, the
rest mass and the intrinsic excitation energy of B, and
pX ≡ (p0

X , ~pX), with p0
X =

√
M2
X + ~p2

X . The cross-section
in IA is given by

d4σ

dΩ′dEk′ dEB dΩB
=

4α2

Q4

Ek′
Ek
|~PB |EB
MB

LµνWA,s.i.
µν (A9)

where the form of the leptonic tensor is again given by
(A4), but the hadronic tensor will have a more complex
structure, viz:

WA,s.i.
µν =

1
4π

∑
αA

∑
αB ,X

(2π)4δ(4)(PA + q − PB − pX)

〈αA ~PA = 0|JAµ (0)|αX~pX , αB ~PBE∗B〉
〈αB ~PBE∗B , αX~pX |JAν (0)|αA ~PA = 0〉 , (A10)

where the sum over X stands for a sum over the dis-
crete and and an integral over the continuum quantum
numbers of X, αB stands for the discrete and contin-
uum quantum numbers of the final nucleus, and the vec-
tor |αX~pX , αB ~PBE∗B〉 consists asymptotically of a nucleus
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B detected with momentum ~PB and intrinsic excitation
energy E∗B , and an undetected hadronic state X. For
the semi-inclusive process we are considering, the general
form of the hadronic tensor, restricted by requirements of
gauge-invariance, time-reversal invariance and parity con-
servation, depends on four structure functions WA

i , corre-
sponding to the four independent scalars of the problem,
viz. (see e.g. [27]and [30] and references therein quoted)

WA,s.i.
µν = −WA

1 gµν +
WA

2

M2
PAµ P

A
ν

+WA
3

1
(p · PA)

1
2

(PAµ p
′
ν + PAν p

′
µ)

+
WA

4

M2
p′µp
′
ν (A11)

where the terms linear in qµ do not appear thanks to the
gauge invariance of the leptonic tensor. The structure of
WA,s.i.
µν can be obtained in a more physically transparent

way, by introducing, instead of W1−4, another set of four
scalar response functions. To this end, the complete set of
polarization 4-vectors for a virtual photon

εµ± = ∓ 1√
2

(0, 1,±i, 0), εµ0 =
1√
Q2

(|~q|, 0, 0, q0) (A12)

is introduced, with εµq
µ = 0,

∑
λ ε
∗µ
λ ε

ν
λ = −gµν + qµqν

q2 ,
and ε∗λ = (−1)λε−λ (λ = ±, 0), to obtain

LµνWA,s.i.
µν =

∑
λλ′

Lλλ′Wλλ′ , (A13)

where

Lλλ′ = εµλLµνε
∗,ν
λ′ ,

Wλλ′ = (−1)λ+λ′ε∗,µλ WA,s.i.
µν ενλ′ . (A14)

Due to time-reversal and parity invariances of the electro-
magnetic interaction, only four independent combinations
of λλ′ will appear in (A13), which are usually chosen in
the following form:

WA
L =

|~q|2
Q2

W00;

WA
T = W11 +W−1−1;

WA
LT =

|~q|√
Q2

2Re [W01 −W0−1] ;

WA
TT = −2ReW1−1; (A15)

defining, respectively, the longitudinal (L), transverse (T ),
longitudinal-transverse (LT ) interference and transverse-
transverse (TT ) nuclear response functions. The corre-
sponding parts of the leptonic tensor can be straightfor-
wardly found by subtracting a factor 4EE ′ cos2 θ/2 from
Lλλ′ , (A14 ), i.e. by defining a “reduced” leptonic tensor
Lλλ′ = 4EE ′ cos2 θ/2 lλλ′ . One finds

l00 =
Q2

|~q|2 ;

l11 =
Q2

2|~q|2 + tan2 θ

2
;

l01 =
1√
2

√
Q2

|~q|

(
Q2

|~q|2 + tan2 θ

2

)1/2

;

l1−1 = − Q2

2|~q|2 (A16)

and the cross section assumes the well-known form (see
e.g. [30] who cosidered the process A(e, e′p)X in the quasi-
elastic region):

d4σ

dΩ′dEk′dEBdΩB
= σMott|~pB |EB

×
∑
i

ViW
A
i (ν,Q2, ~pB , E

f
B) (A17)

where i ≡ {L, T, LT, TT}, and the kinematical factors Vi,
in agreement with the definitions (A15), (A16), have the
following form:

VL =
Q4

|~q|4 ,

VT = tan2(θ/2) +
Q2

2|~q|2 ,

VLT =
Q2

√
2|~q|2

√
tan2(θ/2) +

Q2

|~q|2 ,

VTT =
Q2

2|~q|2 . (A18)

The nuclear response functions WA
i can be expressed

in term of nuclear dynamics, once a model for the nu-
clear current operators JAµ (0), appearing in (A8), is as-
sumed. Nowadays, there is no rigorous quantum field the-
ory to describe, from first priciples, a many body hadronic
system. Usually, in electromagnetic processes, the nuclear
responses are related to the nucleon responses by some
models, the simplest one being the impulse approximation
(IA). The IA is based on the following assumptions:
1. The nuclear current operator is the sum of one–body

nucleon operators

JAν (Q2) =
A∑

N=1

JNν (Q2), (A19)

i.e. the sum of currents for Dirac particles treated
within an effective quantum field theory, i.e. with their
internal structure described by some phenomenologi-
cal form factors; therefore the effective current opera-
tors for nucleons are Q2-dependent and so is the nu-
clear current operator, where theQ2-dependence in the
r.h.s. and l.h.s. of (A19) can in principle differ;

2. the final hadronic state |αXpX , αB ~PBE∗B〉 asymptot-
ically consists of two non interacting (i.e. plane wave
states) systems, i.e.

|αXpX , αB ~PBE∗B〉 = Â{|αXpX〉|αB ~PBE∗B〉}, (A20)

where Â is a proper antisymmetrization operator;
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3. the inchoerent contributions leading to the emission of
X, due to the interaction of γ∗ with B, are disregarded.

It is straightforward to show that if one adhers to
the above assumptions, inserts in (A10) a complete set
of plane wave nucleon states, and assumes the conserva-
tion of linear momentum by using traslationally invariant
nuclear wave functions, i.e.

〈αA ~PA|{|αN~pN 〉|αB ~PBE∗B〉} =

δ(~PA − ~pN − ~PB)δαA,αN+αB

〈αA ~PA|αN~pN , αB ~PA − ~pNE∗B〉 , (A21)

then in the lab system, the contribution from protons
(tN = 1/2) or neutrons (tN = −1/2) to the hadronic ten-
sor becomes (~pN = −~PB):

WA,s.i.,tN
µν (ν,Q2, ~pN ) =

1
4π

M

E~pN

1
2

∑
sN

∑
αX∫

d~pX〈αN~pN |JNµ (0)|αXpX〉〈αXpX |JNν (0)|αN~pN 〉

δ(MA + ν − p0
n − p0

X)δ(~q + ~pN − ~pX)ntNE∗B (|~pN |) (A22)

where

ntNE∗B
(|~pN |) = A

∑
αA

∑
αB

∣∣∣〈αA ~PA = 0 |αN~pN ;αB − ~pNE∗B〉
∣∣∣2

δαA,αN+αB (A23)

represents the nucleon momentum distribution (assumed
to be independent of sN ), corresponding to the intrinsic
excitation energy E∗B of B. Introducing the nucleon spec-
tral function

P tNN (|~pN |, E) =

A
∑
αA

∑
αB

∑
f

∣∣∣〈αA ~PA = 0 |αN~pN ;αB − ~pNEfB〉
∣∣∣2

δ(E − (EfB − E0
A))δαA,αN+αB , (A24)

we can write

ntNE∗B
(|~pN |) =

∫
dEP tNN (|~pN |, E)δEfB ,E0

B+E∗B
(A25)

where we have considered only the discrete excited states
of B. Due to our ignorance of the nucleon current ma-
trix elements in the nuclear tensor (A22), a common prac-
tice is to express the latter in term of the nucleon tensor
((A5), A = N); however, whereas the three-momentum
conservation is the same in (A5) and (A22), the en-
ergy conservation is not, being, respectively, ν + MA =√

(MB + E∗B)2 + ~pN
2 −

√
~pX

2 +MX
2 in (A22), and ν +

E~pN = E~pN+~q in (A5); as a result, the nuclear tensor
cannot be directly related to the nucleon one, unless some
additional, ad hoc assumptions are made. To this end, two
main prescriptions have been proposed :

1. the hit nucleon is considered to be on-shell, i.e. with
a four momentum equal to the one of a free nucleon

ponN = (
√

~pN
2 +M2, ~pN ) and in (A22) the replace-

ment ν −→ ν̄ = ν + MA −
√

(MB + E∗B)2 + ~p2
N −√

~pN
2 +M2 is done, so that δ(MA+ν−P 0

B−p0
X) −→

δ(
√

~pN
2 +M2 + ν̄− p0

X); by this way, the electromag-
netic vertex of the nuclear tensor (A22) corresponds
to that of a free nucleon, evaluated at the same ~q, but
at the transferred energy ν̄ instead of ν [28–30], which
means that the nucleon hadronic tensor (A5) has to be
evaluated for pN = ponN and Q2

N = Q̄2 = ~q2− ν̄2 6= Q2.
2. The hit nucleon is considered off-shell, with four-

momentum poffN = (p0
N , ~pN ) with p0

N = MA −√
(MB + E∗B)2 + ~pN

2 and δ(MA + ν − P 0
B − p0

X) −→
δ(p0

N+ν−p0
X), which means that the nucleon hadronic

tensor (A5) has to be evaluated for pN = poffN and
Q2
N = ~q2 − ν2 = Q2.

In both cases the nuclear tensor (A22) can be expressed
through the nucleonic tensor (A5) obtaining:

WA,s.i.tN
µν (ν,Q2, ~pN ) = WN

µν(pN · q,Q2
N , p

2
N )

× M

E~pN
ntNE∗B

(|~pN |) (A26)

As discussed in details in [29], both choices imply the
presence of many-body currents, due to the dependence
of poffn and ν̄ upon the four-momentum of the nucleus.
Then, it has also been stressed that the instant-form dy-
namics (used in the present paper) does not mandate one
or the other choice. A comparison of both procedures will
be presented elsewhere ([25]); in the present paper choice 2
has been adopted, and the Q2 dependence of the hadronic
tensor for an off mass shell nucleon is assumed to be the
same as for the free one, i.e.

W tN
µν (pN · q,Q2

N ) = −WN
1 (pN · q,Q2

N )
[
gµν +

qµqν
Q2

]
+
WN

2 (pN · q,Q2
N )

M2
p̃µ p̃ν . (A27)

Inserting (A27) into (A26) and the latter into (A14), one
gets for the nuclear response functions (A15):

WA
i (ν,Q2, ~pN ) =

M

E~pN
nE∗B (|~pN |)

·
∑
α=1,2

Cαi (ν,Q2, pN )

·WN
α (pN · q,Q2

N ) (A28)

with the coefficients Cαi (ν,Q2, pN ) straightforwardly ob-
tained from (A15) and (A18), viz.
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C1
L = −|~q|

2

Q2

C2
L =

|~q|4
Q4

p0
N |~q|+ ν|~PB |cos(θ ~̂PB~q)

M |~q|

2

C1
T = 2

C2
T =

 |~PB |sin(θ
~̂PB~q

)

M

2

C1
LT = 0

C2
LT =

|~q|2
Q2

√
8|~pN |sin(θ

~̂PB~q
)

M

·
p0
N |~q|+ ν|~PB |cos(θ ~̂PB~q)

M |~q| cos(φB)

C1
TT = 0

C2
TT =

1
2

 |~PB |sin(θ
~̂PB~q

)

M

2

cos(2φB) (A29)

where φB is the azymutal angle of ~PB . Changing variables
from ν,Q2, and (pN ·q) to xBj = Q2/(2Mν),Q2, and xA =
Q2/2(pN · q), introducing the usual structure functions
F1 = MW1 and F2 = p1·q

M W2, using the Callan–Gross
relation, F2 = 2xF1, and placing (A28) into (A17), (9) is
obtained, where pN ≡ p1 and B = (A− 1).

The hadronic tensor for the second process we are con-
sidering, viz. A(e, e′B1B2)X, with B1 = N1 and B2 =
(A − 2), will depend upon six response functions which
are given by proper bilinear combinations of the Fourier
transforms of the transition matrix elements of the nuclear
current operator (see e.g. [27]). By following the procedure
described above and by introducing the two-nucleon spec-
tral function (7), (36) can be readily obtained.
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